

Proofs

Much of the *enjoyment and challenge* of geometry is found in "proving things!"

Two column proofs are the most common type of proof that we will use this year.

All two column proofs have the following elements:

- "Given" statements
- "Prove" statement
- A diagram
- Two column: Statements and Reasons
- Every statement and reason is numbered

Definitions

- need to be stated in If then Form
- are reversible

Example: Rt \angle = 90°

If an \angle is a 90° \angle , then it is a rt \angle If an \angle is a rt \angle , then it is a 90° \angle .

Index Card!!

Statements

- Always write a given for the 1st statement
- Statements need to be in a logical order
- Statements are specific
- The LAST statement is the "Prove"

Index Card!!

Reasons

- "Given" is always the 1st Reason
- Definitions written in "if-then" form (they are reversible!)
- Theorems (written out)
- "Addition"/ "Subtraction"
- "Assumed from diagram"
- "Same as _____"

Example Reasons

Index Card!!

Sample Problems

See page 25 in your textbook for Sample Problems #1 - 3

1. Given: $\angle A$ is a rt \angle $\angle C$ is a rt \angle

Prove: $\angle A \cong \angle C$

Statements	Reasons

- 1. $\angle A$ is a rt \angle
- 2. $\angle C$ is a rt \angle
- 3. $\angle A \cong \angle C$

- 1. Given
- 2. Given
- 3. If two angles are right angles, then they are congruent.

2. Given: Diagram as shown Conclusion: $\angle EFG \cong \angle HFJ$

\sim		_		_	-	1 -
	יחי		m	\sim	n	TO
St				_		1.5
$\overline{}$		$\overline{}$		$\overline{}$		•

- 1. Diagram as shown
- 2. $\angle EFG$ is a straight angle.
- 3. $\angle HFJ$ is a straight angle.
- 4. $\angle EFG \cong \angle HFJ$

Reasons

- 1. Given
- 2. Assumed from diagram
- 3. Assumed from diagram
- 4. If two angles are straight angles, then they are congruent.

Given: $\angle RST = 50^{\circ}$

$$\angle TSV = 40^{\circ}$$

 $\angle X$ is a rt \angle

Prove: $\angle RSV \cong \angle X$

Statements

1.
$$\angle RST = 50^{\circ}$$

2.
$$\angle TSV = 40^{\circ}$$

3. $\angle X$ IS 9 ν
4 8. $\angle RSV = 90^{\circ}$

 $\mathbf{5} \mathbf{4}$. $\angle RSV$ is a rt \angle

6. $\angle RSV \cong \angle X$

Reasons

- 1. Given
- 2 Given 3 Given Addition (50 + 40 = 90)
- 5. If an angle is 90 deg, then it is a rt angle

6. If two angles are rt angles, then they are congruent.

Switch to the Midpoints and Bisectors Power Point!

Exit Slip

- 1. List 3 "reasons" for proofs
- 2. What does bisect mean?
- 3. If two points are trisection points, what can you conclude?