## Warm Up

1. Place Homework on corner of desk so I can check completion.

## 2. Write:

a. 3 things we can assume
b. 3 things we cannot assume

## Midpoints, bisectors and

## trisectors



I CAN...

- Define and identify midpoint, angle bisector and trisector
- Write proofs involving bisectors and trisectors


## Draw a figure in which...

- $A, B$, and $C$ are collinear
- A, D, and E are collinear
- B, C, and D are noncollinear
- $F$ is between $A$ and $E$
- $F$ is between $R$ and $S$
- $A, E, R$ and $S$ are noncollinear


## Draw a figure in which...

- $\mathrm{A}, \mathrm{K}, \mathrm{O}$ and Y are collinear
- $K$ is between $O$ and $A$
- The length of AO added to the length of $A Y$ is equal to the length of $O Y(O A+A Y=O Y)$
- $A$ is to the right of $O$


## Midpoint: a point that divides a segment

 into two congruent segments.- The midpoint, $M$, of $\overline{\boldsymbol{A B}}$ is the point between $A$ and $B$ such that $A M=M B$.

- Alternate Definition: The point on a line segment that is equidistant from its endpoints.
- NOTE: rays and lines cannot have midpoints. Why?

We can also say that a midpoint bisects a line segment...

- Bisect: cut into two equal parts.
- Segment Bisector: a segment, ray,
line or plane that intersects a segment at its midpoint.
- $\overline{C P}$ bisects $\overline{G L}$


ANGLE BISECTOR - For ray $Q R$ to be the angle bisector of $\angle P Q S$, point $R$ must be on the interior of $\angle P Q S$ and $\angle P Q R$ must be congruent to $\angle R Q S$.


In other words, a ray must divide an angle into two congruent, adjacent angles.

Segments and angles can also be trisected...

- Trisect: cut into three equal parts.
-Trisection points: the two points where a segment is divided.


If $\overline{A R} \cong \overline{R S} \cong \overline{S C}$ what conclusions can we draw?

- Angle trisectors: the two rays that divide an angle
$\angle G E O$ is trisected by the two interior rays. What conclusions can we draw?



## Example 1

 Cmeasure$J K$ bisects $\angle H J L$. Given that $m \angle H J L=42^{\circ}$, what are the measures of $\angle H J K$ and $\angle K J L$ ?


## Example 2

In the diagram, MO bisects $\angle \mathrm{LMN}$. The measures of the two congruent angles are $(3 x-20)^{\circ}$ and $(x+10)^{\circ}$. Solve for $x$ and find the measure of all three angles.

$$
\begin{gathered}
3 x-20=x+10 \\
-x \\
2 x-20=10 \\
+20+20 \\
2 x=30 \\
x=15
\end{gathered}
$$



## Example 3

You are given that $T$ and $W$ are trisection points on $\overline{S P}$ and $S P=24$.
Find ST. 8
Find SW. 16


## Example 4

Given $\mathrm{OM}=2 x+3, \mathrm{MP}=x-9$ and $\mathrm{OP}=45$. Is M the midpoint of OP? No

$2 x+3+x-9=45$
$3 x-6=45$


Example 5
Given: $\overline{D H} \cong \overline{H F}$
Prove: H is the midpoint of $\overline{D F}$


| STATEMENTS | REASONS |
| :--- | :--- |
| (1) $\overline{D H} \cong \overline{H F}$ | (1) Given |
| (2) $H$ is the midpoint | If a point clindes a |
| of $\overline{D F}$ | reg. in to $2 \cong$ begs, then |
|  | it is a michpt. |

## Homework

- p. 26 \#6, 7
- p. 32 \#5-7, $9-12,14,18$

