1. Grab board/marker for your group 2. Do WarmUp below

TP bisects VS and MR. VM is congruent to $S R$.
$\mathrm{MP}=9, \mathrm{VT}=6$
Perimeter of MRSV $=62$
Find VM.

Paragraph Proof

E

Given: Diagram
Prove: Angle DBC is congruent to Angle E

According to the diagram, Angle ABC is a straight angle.
Therefore,

$$
\begin{gathered}
2 x+x=180 \\
3 x=180 \\
x=60
\end{gathered}
$$

Since Angle DBC $=60^{\circ}$ and Angle $\mathrm{E}=60^{\circ}$, the angles are congruent.

Paragraph Proof

1
Given: Angle 1 is acute Angle 2 is acute
Conclusion: Angle 1 is congruent to Angle 2

This conclusion cannot be proved. For example, if mAngle $1=20$ and $\mathrm{mAngle} 2=30$, they are both acute but Angle 1 is not congruent to Angle 2. (Counterexample)

Paragraph Proof

D

E

Given: Angle D is 90°
 Angle E is obtuse
 Prove: Angle D is congruent to Angle E

This conclusion can be proved false. Since Angle E is obtuse, its measure is greater than 90. Since Angle D and Angle E have different measures, they are not congruent.

On Your Own:

Do p. 37 \#2 and \#3 in Boss-Secretary
Format

Conditional Statements

I CAN...

- Write conditional, converse, and biconditional statements

Conditional Statements

- A conditional statement is written in the form if \boldsymbol{p}, then \mathbf{q}.
- If a given condition is met (if p), then another condition is true or an event will happen (then q).
- The if-clause is the hypothesis; the then-clause is the conclusion.

Conditional Statements

Ex 1.) If you don't do your homework, then
$\frac{\text { you will get lunch detention. }}{q-\text { Conclusion }}$

Rewrite the statements in if-then form:
Ex 2.) Every multiple of 4 is also a multiple of 2.
If a number is a multiple of 4 , then it is a multiple of 2 .
True or False?
True

Conditional Statements

Ex. 3) $x^{2}=144, x=12$

$$
\text { If } x^{2}=144, \text { then } x=12
$$

True or False?
False - why?

Counterexample: $(-12)^{2}=144$

Logical Order

When given several related conditional statements, you must put them in logical order. The conclusion of one statement will flow into the hypothesis of the next.

Logical Order - Put the following if-then statements in order

- A. If Cameron graduates with a degree, then he will make a lot of money.
- B. If Cameron studies hard, then his grades will be good.
- C. If Cameron makes a lot of money, then he will be able to buy a new car.
- D. If Cameron attends college, then he will graduate with a degree.
- E. If Cameron has good grades, then he will be able to attend college.
- Logical Order:
- B. If Cameron studies hard, then his grades will be good.
- E. If Cameron has good grades, then he will be able to attend college.
- D. If Cameron attends college, then he will graduate with a degree.
- A. If Cameron graduates with a degree, then he will make a lot of money.
- C. If Cameron makes a lot of money, then he will be able to buy a new car.

Logical Order Ex. 2 - Put the statements in logical order.

A. If a shape is a square, then it is a rhombus.

- B. If a shape is a parallelogram , then it is a quadrilateral.
- C. If a shape is a quadrilateral, then it is a polygon.
- D. If a shape is a rhombus, then it is a parallelogram.
- A. If a shape is a square, then it is a rhombus.
- D. If a shape is a rhombus, then it is a parallelogram.
- B. If a shape is a parallelogram , then it is a quadrilateral.
- C. If a shape is a quadrilateral, then it is a polygon.

Inverse - Converse - Contrapositive

What is the Inverse?

- The inverse of a conditional statement is formed by negating the hypothesis and the conclusion.
- The sentence if p, then q becomes

if not p, then not q.

- State the inverse of the following conditional statements:
- Ex. 1) If it is sunny today, then Julie will go running.
Inverse - If it is not sunny today, then Julie will not go running

Converse

What is the converse?

The converse of a conditional statement is formed by switching the places of the hypothesis and conclusion.
The sentence if p, then q becomes

$$
\text { if } q \text {, then } p .
$$

nonveree

State the converse of the if-then statements:
Ex. 1) If a polygon has five sides, then it is a pentagon.
p - hypothesis
q - conclusion

Converse - If a polygon is a pentagon, then it has five sides.
p - hypothesis

True or False?
True

Converse

Ex. 2) If two lines are perpendicular, then they intersect.

Converse - If two lines intersect, then they are perpendicular.

True or False?
False - Why?

Counterexample -

Converse

Ex. 3) If a college football team wins the Big Ten Conference then they will play in a bowl game.

Converse - If a college football team plays in a bowl game then they won the Big Ten Conference.

True or False?
False - Why?
Counterexample - There are many other teams that play in bowl games!

Converse

Ex. 4) If you get an A on the final exam then you will get an A in Advanced Geometry.

Converse - If you get an A in Advanced Geometry then you got an A on the final exam.

True or False?
False - Why?
Counterexample - The final exam is only 15% of your grade!

Converse

Ex. 5) If three points are collinear then they lie on the same line.

Converse - If three points lie on the same line then they are collinear.

True or False?
 True!

Biconditional Statements

What is a biconditional statement?

If a conditional statement and its converse are both TRUE then they can be combined in a biconditional statement.
The sentences if p, then q and if q, then p become
p if and only if q.

Biconditional Statements

State the biconditional:
Ex. 1) If a polygon has five sides, then it is a pentagon.
Converse - If a polygon is a pentagon, then it has five sides.

Biconditional - A polygon has five sides if and only if it is a pentagon

Biconditional Statements

Ex. 2) If three points are collinear then they lie on the same line.
Converse - If three points lie on the same line then they are collinear.

Biconditional - Three points are collinear if and only if they lie on the same line

Homework

p. 37 \#4-7, 9
p. 42 \#1-5, $8-12,14$

