Warm Up
p. 94 \#16

Given: Angle 1 congruent to Angle 2
PE bisects Angle APN

Prove: Angle XPE congruent to Angle ENY
(1) $\angle 1 \cong \angle 2$
(2) $\overline{P E}$ bis $\angle A P N$
(3) $\overline{N E}$ bis $\angle A N P$
(4) LXPY is a straight \angle
(5) Lpwy isa straightL
(b) $\angle 3=\angle 4$
$(8<5 \cong 46$
(2) Given

E(Tiven
(4) Assumed
(5) Assumed
(6) If a lime
(7) 2 תomeas 6

ADVANCED GEOMETRY SECTION 2.5 AND 2.6

Addition, Subtraction, Multiplication, and Division Properties

Addition, Subtraction, Multiplication and Division

 Properties

I CAN...

- Use the addition, subtraction, multiplication and division properties
- Write proofs involving the addition, subtraction, multiplication and division properties

Quick Review

- Define complementary angles
- Define supplementary angles
- Define congruent segments
- Define congruent angles
- Two angles are complementary if their sum is 90°
\square

intary if their

- Two segments are congruent if their measures are equal.
\square dongruent if they have

Theorems

If a segment is added to two congruent segments, the sums are congruent. (Addition Property) and
ongles

Theorems

If an angle is added to two congruent angles, the sums are congruent (Addition Property)

- Note that we first need to know that we have 2 congruent angles, then that we are adding the same angle to both

Theorems

If congruent segments are added to congruent segments, the sums are congruent. (Addition Property)

Theorems

If congruent angles are added to congruent angles, the sums are congruent. (Addition Property)

$\mathrm{m} \angle \mathrm{JIL}+\mathrm{m} \angle \mathrm{LIK}=\mathrm{m} \angle \mathrm{JKL}+\mathrm{m} \angle \mathrm{LKI}$

Theorems

If a segment (or angle) is subtracted from congruent segments (or angles), the differences are congruent. (Subtraction Property)

$\mathrm{QR}-\mathrm{BR}=\mathrm{BA}-\mathrm{BR}$

Theorems

If a segment (or angle) is
subtracted from congruent segments (or angles), the differences are congruent. (Subtraction Property)

Using the Addition and Subtraction Properties

\square An addition property is used when the segments or angles in the conclusion are greater than those in the given information

- A subtraction property is used when the segments or angles in the conclusion are maller than those in the given information.

Statements	Reasons
1. GI $\because H K$	1. Given
$2 . G W$	2. subtraction

Multiplication Property

- If segments (or angles) are congruent, then their like multiples are congruent.
$A B \times 3$

- If $\mathrm{B}, \mathrm{C}, \mathrm{F}$, and G are trisection points and $\overline{A B} \cong \overline{E F}$, then $\overline{A D} \cong \overline{E H}$ by the Multiplication Property.

Division Property

- If segments (or angles) are congruent, then their like divisions are congruent.

- If $\angle C A T \cong \angle D O G$, and $\overrightarrow{A S}$ and $\overrightarrow{O Z}$ are angle bisectors, then $\angle C A S \cong \angle D O Z$ by the division property.

Using the Multiplication and Division Properties in Proofs

- Look for a dous of the word midpoint, trisects, or bisects in the "Given."
- Use multiplication if hat is Given < the Conc
- Use division if hat is $>$ the Conclusion

Example

- Given: $\overline{M P} \cong \overline{N S}$

O is the midpoint of
R is the midpoint of

- Prove: $\overline{M O} \cong \overline{N R}$

$\begin{array}{ll} & \text { Statements } \\ \text { (1) } \overline{M P} \cong \overline{N S} & \text { Reasons } \\ \text { (2) } O \text { is mdt of } \overline{M P} & \text { 2) Given } \\ \text { (3) } R \text { is midpt of } \overline{N S} & \text { (3) Given } \\ \text { (4) } \overline{M O} \cong \overline{N R} & \text { (4) Division Proper ty }\end{array}$

More Examples and Homework

- Read Sample Problems 2 through 4 on pages 90 and 91.
- HW: p. 86 \#4-6, 11;

$$
\text { p. } 91 \text { \#1, 3, 4, 11, } 12
$$

Don't forget to draw all the diagrams!!!!!

