WARM UP

Given: $\quad \angle 1 \cong \angle 2$
BG bisects $<A B F$
CE bisects < FCD

Prove: $\quad \angle 3 \cong \angle 4$

THE ANSWER!!

\(\left.$$
\begin{array}{|l|l|}\hline \text { Statements } & \text { Reasons } \\
\hline \text { 1. } \angle \mathbf{1} \cong \angle 2 & \text { 1. Given } \\
\hline \text { 2. } \mathrm{BG} \text { bisects } \angle \mathrm{ABF} & \text { 2. Given } \\
\hline \text { 3. } \mathrm{CE} \text { bisects }<\mathrm{FCD} & \text { 3. Given } \\
\hline \text { 4. }<1 \text { supp }<\mathrm{ABF} & \begin{array}{l}\text { 4. If the sum of } 2<\text { s forms a st }<\text {, then the } \\
<\text { s are supplementary }\end{array} \\
\hline \text { 5. }<2 \text { supp }<\mathrm{FCD} & \text { 5. Same as } 4\end{array}
$$ \begin{array}{ll}6. \angle A B F \cong \angle F C D \& 6. Supplements of congruent<s are

congruent\end{array}\right]\)	7. Division Property

ADVANCED GEOMETRY SECTION 2.7

Objective

\square I can solve problems and write proofs involving the Transitive and Substitution Properties.

Theorem: Transitive Property

\square If two angles (or segments) are congruent to the same angle (or segment), then they are congruent to each other.
\square Example:
If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$.

Theorem: Transitive Property

\square If angles (or segments) are congruent to congruent angles (or segments), then they are congruent to each other.
\square Example:

Substitution Property

\square Replace one angle with another.
\square Use with complementary and supplementary angles.
\square Example: If $\angle 1$ is comp to $\angle 2$ and $\angle 2 \cong \angle 3$, then $\angle 1$ is comp to $\angle 3$.

Given: $\angle 1 \cong \angle 2$
Conclusion: $\angle 1$ is supp $\angle 3$

(1)

(3) LI supp to $L 3$

Homework

\square P. 97 \#3-5, 10, 12

