WARM UP

Prove: $\angle 3 \cong \angle 4$

THE ANSWER!!

Statements	Reasons
1. $\angle 1 \cong \angle 2$	1. Given
2. BG bisects <abf< td=""><td>2. Given</td></abf<>	2. Given
3. CE bisects < FCD	3. Given
4. <1 supp <abf< td=""><td>4. If the sum of 2 <s <,="" a="" forms="" li="" st="" the<="" then=""><s are="" li="" supplementary<=""></s></s></td></abf<>	4. If the sum of 2 <s <,="" a="" forms="" li="" st="" the<="" then=""><s are="" li="" supplementary<=""></s></s>
5. <2 supp <fcd< td=""><td>5. Same as 4</td></fcd<>	5. Same as 4
6. $\angle ABF \cong \angle FCD$	6. Supplements of congruent <s are<br="">congruent</s>
7. $\angle 3 \cong \angle 4$	7. Division Property

ADVANCED GEOMETRY SECTION 2.7

Transitive and Substitution Properties

I can solve problems and write proofs involving the Transitive and Substitution Properties.

Theorem: Transitive Property

- If two angles (or segments) are congruent to the same angle (or segment), then they are congruent to each other.
- Example:

If $\angle A \cong \angle Band \angle B \cong \angle C$, then $\angle A \cong \angle C$.

Theorem: Transitive Property

If angles (or segments) are congruent to congruent angles (or segments), then they are congruent to each other.

■ Example: If $\angle A \cong \angle C, \angle B \cong \angle C, and \angle B \cong \angle D,$ then $\angle A \cong \angle Band \angle A \cong \angle D.$

Substitution Property

- Replace one angle with another.
- Use with complementary and supplementary angles.

- \Box Example: If $\angle 1$ is comp to $\angle 2$ and
 - $\angle 2 \cong \angle 3$, then $\angle 1$ is comp to $\angle 3$.

Homework

□ P. 97 #3 – 5, 10, 12