Section 3.4

Beyond CPCTC

Median

- A median of a triangle is a line segment drawn from any vertex of the triangle to the midpoint of the
 opposite side.

Median

- A median divides the opposite side into two congruent segments, or bisects the side to which it is drawn.

Median

- Every triangle has three medians.

Altitude

- An altitude of a triangle is a line segment drawn from any vertex of the triangle to the opposite side,
 extended if necessary, and perpendicular to that side.

Altitude

- An altitude of a triangle forms a right angle with the side to which it is drawn.

Altitude

- Every triangle has three altitudes.

Median or Altitude?

- Identify the median(s) and altitude(s) shown in each of the following diagrams:

Median(s):
$\overline{C E}, \overline{B F}$

Altitude(s):
$\overline{A D}$

Median or Altitude?

- Identify the median(s) and altitude(s) shown in each of the following diagrams:

$$
\frac{\text { Median }}{\text { GI }}, \frac{\mathrm{s})}{\mathrm{FJ}}, \frac{\mathrm{HK}}{}
$$

Altitude(s): $\overline{G I}, \overline{F L}, \overline{H M}$

Postulate

- Two points determine a line (or ray or segment).

Auxiliary Lines

- Given:
$\overline{A B} \cong \overline{A C}$
$\overline{B D} \cong \overline{C D}{ }^{\prime} \cong$
- Prove:
$\angle A B D \cong \angle A C D$

Auxiliary Lines

- Sometimes, it may be necessary or helpful to add lines, rays, or segments to a given diagram. We can connect any two points already in our diagram,
 using the previous postulate as
justification - any two points determine a line.
- Given: $\overline{A B} \cong \overline{A C}$

$$
\overline{B D} \cong \overline{C D}
$$

- Prove: $\angle A B D \cong \angle A C D$

1. $4 B=\overline{B A D}, \widetilde{B D} \overline{C D} \overline{C D}$

2(3Draw \bar{A}, w AD
3. $\angle A D) \overline{A B D} \cong \overline{A D}$
4. $A B D \sim A C R$
5. $4 A B D A E A C D$
(B) Gavern?
23. Two Pooints de determine a line -
(31. Refllexives Roperty
4. $\operatorname{sss} 5(T, 1,3)$

द6CRTETC

Given:

$$
\begin{aligned}
& \overline{A D} \cong \overline{C D} \\
& \angle A D B \cong \angle C D B
\end{aligned}
$$

Prove: $\overline{D B}$ is the median to $\overline{A C}$

(4) Is.the medivechiceA to Ae

RGairen ${ }_{1} 2_{\text {Rinen }}^{2}$ (iven

1) Sanvene llexive Prop.
(3) 2 Rejle exvéS 5
$41-34$
2) $\operatorname{cosectc} C T C$
(b) befintion pf needidarts at the vertex and cuts the oppos, te seg. in half then it is the median
