A Right Angle Theorem and the Equidistance Theorems

Advanced Geometry 4.3 and 4.4

Warm-Up (with a Partner)

Prove that if two angles are both supplementary and congruent, then they are right angles. (Write a paragraph proof).

Given:
Diagram:

Prove:

Warm-Up (with a Partner)

Prove that if two angles are both
supplementary and congruent, then they are right angles.
Given: $\angle 1 \cong \angle 2$
Diagram: $\longleftarrow<12$
Prove: $\angle 1$ and $\angle 2$ are right angles

Since you can assume straight angles, angle 1 and angle 2 are supplementary. We are given that angle 1 and angle 2 are congruent, so if their sum is 180° and they have the same measure, they must be 90° or right angles.

You did it! Add to your Index Cards!

Right Angle Theorem:
Assumed

If two angles are both supplementary and congruent, then they are right angles. $\angle P \subset I C$

Example

- Given: Circle P

S is the midpoint of $\overline{\mathrm{QR}}$

- Prove: $\overline{P S} \perp \overline{Q R}$
- Given: Circle P

Example

S is the midpoint of $\overline{\mathrm{QR}}$
Prove: $\overline{P S} \perp \overline{Q R}$

Statements	Reasons
1. Gircle P	1. Given
\sqrt{S} is the midpoint of $\overline{Q R}$	2. Given
$\text { 2. } \overline{Q S} \cong \overline{S R}$	3. Def of midpt
4. $\overline{P S} \cong \overline{P S}$	4. Reflexive
6. Draw $\overline{P Q}$ and $\overline{P R}$	5. Two points det a seg
6. $\overline{P Q} \cong \overline{P R}$	6. All radii of a circle are \cong
7. $\triangle P Q S \cong \triangle P R S$	7. SSS
8. $\angle P S Q \cong \angle P S R$	8. СРСТС
9. $\angle P S Q$ and $\angle P S R$ are supp	9. Def of supp
10. $\angle P S Q$ and $\angle P S R$ are rt $\angle ' s$	10. If two angles are supp and congruent, then they are right angles.
11. $\overline{P S} \perp \overline{Q R}$	11. Def of perpendicular

INDEX CARD

A.) (def) Distance (between two objects) is the length of the shortest path joining them.
B.) (postulate) A line segment is the shortest path between two points.

Definition of Equidistance:

- If 2 points P and Q are the same distance from a third point X , then X is said to be EQUIDISTANT from P and Q .

Another index card

Definition of a Perpendicular Bisector:

- A perpendicular bisector of a segment is the line that both BISECTS and is PERPENDICULAR to the segment.

Lis \perp bisector of $A B$

$$
\begin{aligned}
& \text { 1) cuts in half } \\
& \text { 2) forms rt L's }
\end{aligned}
$$

Those G@mb
\downarrow

Theorem: If 2 points are equidistant from the endpoints of a segment, then they determine the perpendicular bisector of that segment.
P and Q qre two points that are gquidistant from E and D(the endpoints of segment ED), so they determine the perpendicutar bisector of the segment (ED).
NEEDED: 2 points equidistant or

2 pairs congruent segments Trades S@ro

Theorem: If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

If N is on $P Q$, the perpendicular bisector of ED, then N is equidistant from E and D. $(E N=N D)$
NEEDED: Perpendicular bisector of the segment

TRUE/FALSE PRACTICE

Ready??

$\overline{A D} \perp$ bi sec tor of $\overline{B C}$
 B

E is the midpoint of $B C$.

$\overline{A D} \perp$ bi sec tor of $\overline{B C}$
 A

 B

$<A E C$ is a right angle TRUE

$\overline{A D} \perp$ bi sec tor of $\overline{B C}$ A

 B

E is the midpoint of $A D$
FALSE

$\overline{A C} \cong \overline{A B}$

$\overline{A D} \perp$ bi sec tor of $\overline{B C}$
 B

TRUE

$\overline{A D} \perp$ bi sec tor of $\overline{B C}$

 $\overline{C A} \cong \overline{C D}$FALSE

$\overline{A D} \perp$ bi sec tor of $\overline{B C}$
 B

$$
\overline{A E} \cong \overline{E D}
$$

FALSE

$\overline{A D} \perp$ bi sec tor of $\overline{B C}$
 B

$\overline{C B} b i \sec t s \overline{A D}$
FALSE

Example \#1

Given:	$M N \cong M P$
	$\cong Q \cong P Q$
Prove:	$N O \cong P O$

Statements

1. $\mathrm{MN} \cong \mathrm{MP}$
2. $\mathrm{NQ} \cong \mathrm{PQ}$
3. $M Q$ is perpendicular to $N P$
4. $\mathrm{NO}=\mathrm{PO}$
5. Given
6. Given.
7. If two points are equidistant from the endpoints of a segment, then they determine the perpendicular bisector of that segment.
8. If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of that segment.

Example Problem 2

Given: $\overline{\mathrm{AM}} \cong \overline{\mathrm{MH}}$ $\overline{\mathrm{AP}} \cong \overline{\mathrm{PH}}$

Prove: $\triangle A P T \cong \triangle H P T$

EXAMPLE PROBLEM 2 SOLUTION

Statements
1. $\overline{\mathrm{AM}} \cong \overline{\mathrm{MH}}$
2. $\overline{\mathrm{AP}} \cong \overline{\mathrm{PH}}$
3. $\overline{\mathrm{MT}}$ is the perpendicular bisector
of $\overline{\mathrm{AH}}$
4. $<\mathrm{PTH},<\mathrm{PTA}$ are right angles
5. $\Delta \mathrm{PTH}, \Delta \mathrm{PTA}$ are right triangles
6. $\overline{\mathrm{PT}} \cong \overline{\mathrm{PT}}$
7. $\Delta \mathrm{APT} \cong \Delta \mathrm{HPT}$

Reasons

1. Given
2. Given
3.If two points are equidistant from the endpoints of a segment, then they determine the perpendicular bisector of that segment.
3. Perpendicular lines form right angles (Def of perpendicular)
4. Def of right triangle
5. Reflexive
6. $\operatorname{HL}(2,5,6)$

Example Problem 3

Given: $\overline{K L}$ is the perpendicular bisector of $\overline{\mathrm{YE}}$

Prove: $\triangle K B Y \cong \triangle K B E$

EXAMPLE PROBLEM 3 SOLUTION

Statements	Reasons
1. $\overline{\mathrm{KL}}$ is the perpendicular bisector 1. Given of $\overline{\mathrm{YE}}$ 2. $\overline{\mathrm{YB}} \cong \overline{\mathrm{BE}}$ 2. If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of that segment 3. $\overline{\mathrm{KY}} \cong \overline{\mathrm{KE}}$ 3. Same as 2 4. $\overline{\mathrm{KB}} \cong \overline{\mathrm{KB}}$ 4. Reflexive 5. $\Delta \mathrm{KBY} \cong \Delta \mathrm{KBE}$ 5. SSS $(2,3,4)$	

Homework

- p. 182 \#4 and 9, 11
- p. $187 \# 3-5,7,12,14,15$

