A Right Angle Theorem and the Equidistance Theorems

Advanced Geometry 4.3 and 4.4

Warm-Up (with a Partner)

Prove that if two angles are both supplementary and congruent, then they are right angles. (Write a paragraph proof).

Given:

Diagram:

Prove:

Warm-Up (with a Partner)Prove that if two angles are bothsupplementary and congruent, then theyare right angles.Given: $\angle 1 \cong \angle 2$ Diagram:12Prove: $\angle 1$ and $\angle 2$ are right angles

Since you can assume straight angles, angle 1 and angle 2 are supplementary. We are given that angle 1 and angle 2 are congruent, so if their sum is 180° and they have the same measure, they must be 90° or right angles.

You did it! Add to your Index Cards!

Right Angle Theorem:

Assumed If two angles are both supplementary and congruent, then they are right angles. CPCIC

• Given:	Circle P
----------	----------

Example

Ρ

R

Q

S is the midpoint of \overline{QR}

Prove: $\overline{PS} \perp \overline{QR}$

S	tatements	Reasons
1.	Gircle P	1. Given
2	S is the midpoint of \overline{QR}	2. Given
∖ <i>3</i> .	$\overline{QS} \cong \overline{SR}$	3. Def of midpt
v 4.	$\overline{PS} \cong \overline{PS}$	4. Reflexive
S.	Draw \overline{PQ} and \overline{PR}	5. Two points det a seg
$\sqrt{6}$.	$\overline{PQ} \cong \overline{PR}$	6. All radii of a circle are \cong
7.	$\Delta PQS \cong \Delta PRS$	7. SSS
8.	$\angle PSQ \cong \angle PSR$	8. CPCTC
9.	$\angle PSQ$ and $\angle PSR$ are supp	9. Def of supp
1(). $\angle PSQ$ and $\angle PSR$ are rt $\angle s$	10. If two angles are supp and congruent, then they are right angles.
11	1. $\overline{PS} \perp \overline{QR}$	11. Def of perpendicular

INDEX CARD

A.) (def) <u>Distance</u> (between two objects) is the length of the shortest path joining them.

B.) (postulate) A <u>line segment</u> is the shortest path between two points.

Definition of Equidistance:

If 2 points P and Q are the same distance from a third point X, then X is said to be <u>EQUIDISTANT</u> from P and Q.

Another index card

Definition of a Perpendicular Bisector:

A perpendicular bisector of a segment is the line that both
<u>BISECTS</u> and is <u>PERPENDICULAR</u>

to the segment. Lis L bisector of AB i) cuts in half 2) forms rt L's Index Card Theorem: If 2 points are equidistant from the endpoints of a segment, then they determine the perpendicular bisector of that segment.

D

P and Q are two points that are equidistant from E and D (the endpoints of segment ED), so they determine the perpendicular bisector of the segment (ED).

NEEDED: 2 points equidistant or 2 pairs congruent segments Index Card

Theorem: If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

D

If N is on PQ, the perpendicular bisector of ED, then N is equidistant from E and D. (EN = ND)

NEEDED: Perpendicular bisector of the segment

TRUE/FALSE PRACTICE

Ready??

E is the midpoint of BC.

TRUE

<AEC is a right angle

TRUE

E is the midpoint of AD

FALSE

Example #1

Given: $MN \cong MP$

 $NQ \cong PQ$

Prove: NO \cong PO

Statements	Reasons
1. MN \cong MP	1. Given
2. NQ \cong PQ	2. Given.
3. MQ is perpendicular to NP	3. If two points are equidistant from the endpoints of a segment, then they determine the perpendicular bisector of that segment.
4. NO = PO	4. If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of that segment.

Example Problem 2

ĀP≅PH

EXAMPLE PROBLEM 2 SOLUTION

Statements	Reasons
1. A M≅ M H	1. Given
2. $\overline{\text{AP}} \cong \overline{\text{PH}}$	2. Given
3. $\overline{\text{MT}}$ is the perpendicular bisector of $\overline{\text{AH}}$	3.If two points are equidistant from the endpoints of a segment, then they determine the perpendicular bisector of that segment.
4. < PTH, <pta angles<="" are="" right="" td=""><td>4. Perpendicular lines form right angles (Def of perpendicular)</td></pta>	4. Perpendicular lines form right angles (Def of perpendicular)
5. Δ PTH, Δ PTA are right triangles	5. Def of right triangle
6. PT≅PT	6. Reflexive
7. ΔΑΡΤ≅ΔΗΡΤ	7. HL (2,5,6)

Example Problem 3

Given: $\overline{\text{KL}}$ is the perpendicular bisector of $\overline{\text{YE}}$

Prove: $\Delta KBY \cong \Delta KBE$

EXAMPLE PROBLEM 3 SOLUTION

Statements	Reasons
1. $\overline{\text{KL}}$ is the perpendicular bisector of $\overline{\text{YE}}$	1. Given
2. $\overline{\text{YB}} \cong \overline{\text{BE}}$	2. If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of that segment
3. $\overline{\mathrm{KY}} \cong \overline{\mathrm{KE}}$	3. Same as 2
4. $\overline{\text{KB}} \cong \overline{\text{KB}}$	4. Reflexive
5. ΔΚΒΥ≅ΔΚΒΕ	5. SSS (2,3,4)

Homework

- p. 182 #4 and 9, 11
- p. 187 #3 5, 7, 12, 14, 15