

Given: <V ≅ <YRX <Y ≅ <TRV Prove: <V ≅ <Y

Statements	Reasons
1. <v <yrx<br="" ≅=""><y <trv<="" td="" ≅=""><td>1. Given</td></y></v>	1. Given
2. <trv <s.<="" <yrx="" and="" are="" td="" vertical=""><td>2. Assumed from diagram</td></trv>	2. Assumed from diagram
3. <trv <yrx<="" td="" ≅=""><td>3. Vertical <s are="" td="" ≅<=""></s></td></trv>	3. Vertical <s are="" td="" ≅<=""></s>
4. <v <y<="" td="" ≅=""><td>4. Transitive Property</td></v>	4. Transitive Property
THE ANSWER	

Advanced Geometry

Section 5.2 Proving lines are parallel

 If two lines are cut by a transversal such that two alternate interior angles are congruent, then the lines are parallel.
If the second s

Shortcut: Alt int
Shortcut: Alt int

If $\ell \mid m$.

then $\ell \mid \mid m$.

- If two lines are cut by a transversal such that two interior angles on the same side of the transversal are supplementary, then the lines are parallel.
- Same side int $\angle s$ suppl \Longrightarrow || lines

then $a \mid b$.

Same side ext <'s supp => || lines.

If *i* are supp, then $a \mid | b$.

• If two coplanar lines are \perp to a 3rd line, then they are ||.

If $a \perp c$ and $b \perp c$, then $a \parallel b$.

Read Sample Problem 1 on p. 218

• Homework: p. 220 #4, 5, 8, 9, 13, 16, 20, 24

****TEST Next Tuesday** Index Cards due, too!!! (50)

