Given: < V \cong <YRX

$$
<Y \cong<T R V
$$

Prove: $<\mathrm{V} \cong<\mathrm{Y}$

**Two Column Proof

(1) $\angle V \cong \angle y p x$
(2) $\angle y \cong \angle T R v$
(3) $\angle T R V \cong \angle y^{\top} R x$
(3) Verticals L's are 气
(4) $\angle v \cong \angle y$
(4) Iramsitive Property

$$
\begin{aligned}
\text { Given: } & <V \cong<Y R X \\
& <Y \cong<T R V \\
\text { Prove: } & <V \cong<Y
\end{aligned}
$$

Statements	Reasons
$1 .<V \cong<Y R X$	1. Given
$<Y \cong<T R V$	

2. $<$ TRV and $<Y R X$ are vertical < S.
3. $<T R V \cong<Y R X$
4. $<V \cong<Y$
5. Assumed from diagram
6. Vertical <s are \cong
7. Transitive Property

$$
\hat{f} \rightarrow
$$

Advanced Geometry

Section 5.2 Proving lines are parallel

- If two lines are cut by a transversal such that two alternate interior angles are congruent, then the lines are parallel.

- Shortcut: Alt int

If 1 then $\ell \| m$.

If TE then $\ell|\mid m$.

Theorem

- Corresp

then $\boldsymbol{\ell}|\mid \boldsymbol{m}$.

- If two lines are cut by a transversal such that two interior angles on the same side of the transversal are supplementary, then the lines are parallel.
- Same side int $\langle\boldsymbol{s}$ suppl $\Rightarrow| \mid$ lines

then $a|\mid a$.

Theorem

Same side ext <'s supp => || lines.

If are supp, then $\boldsymbol{a} \| \boldsymbol{b}$.

Theorem

- If two coplanar lines are \perp to a $3^{\text {rd }}$ line, then they are $\|$.

If $\mathrm{a} \perp \mathrm{c}$ and $\mathrm{b} \perp \mathrm{c}$, then $\mathrm{a} \| \mathrm{b}$.

Theorem

- Read Sample Problem 1 on p. 218
- Homework: p. 220 \#4, 5, 8, 9, 13, 16, 20, 24
**TEST Next Tuesday Index Cards due, too!!! (50)

Homework

