7.1 Triangle Application Theorems and 7.2 Two Proof-Oriented Theorems

Objective: To apply theorems about the interior angles, the exterior angles, and the midlines of triangles.

Index Card

Definition

- Exterior angles (page 296)

Be sure to include a diagram!!!

Theorems - INDEX CARDS

- The sum of the measures of the three angles of a triangles is 180.
- The measure of an exterior angles of a triangles is equal to the sum of the measures of the remote interior angles.
- If a segment joining the midpoints of two sides of a triangle is parallel to the third side, then its length is one-half the length of the third side (Midline Theorem).
- If two angles of one triangle are congruent to two angles of a second triangle, then the third angles are congruent (No-Choice Theorem).

See pages 295, 296, and 302
Don't forget to draw diagrams for each!!!!!

Example 1

In the diagram as marked, if $\mathrm{m} \angle \mathrm{G}=50$, find $\mathrm{m} \angle \mathrm{M}$.

Solution
$2 x+2 y+50=180$
$2 x+2 y=130$
$x+y=65$
$65+\mathrm{m} \angle \mathrm{M}=180$ $\mathrm{m} \angle \mathrm{M}=115$

Example 2

The vertex angle of an isosceles triangle is twice as large as one of the base angles. Find the measure of the vertex angle.

$$
\begin{aligned}
& \text { Let } m \text { vertex } \angle=2 x \\
& \qquad \begin{array}{r}
x+x+2 x=180 \\
4 x=180 \\
x=45
\end{array}
\end{aligned}
$$

m vertex $\angle=2(45)=90$

Example 3

In $\triangle \mathrm{DEF}$, the sum of the measures of $\angle \mathrm{D}$ and $\angle \mathrm{E}$ is 110 . The sum of the measures of $\angle \mathrm{E}$ and $\angle \mathrm{F}$ is 150 . Find the sum of the measures of $\angle \mathrm{D}$ and $\angle \mathrm{F}$.

$$
\begin{array}{r}
\text { Solution } \\
\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=180 \\
110+\angle \mathrm{F}=180 \\
\angle \mathrm{~F}=70
\end{array}
$$

$$
\begin{array}{r}
\angle D+150=180 \\
\angle D=30 \\
\therefore \angle D+\angle F=30+70=100
\end{array}
$$

Given: $\angle \mathrm{A}=\angle \mathrm{D}$

Prove: $\angle \mathrm{E}=\angle \mathrm{C}$

Statements

1. $\angle \mathrm{A}=\angle \mathrm{D}$
2. $\angle \mathrm{ABE}=\angle \mathrm{DBC}$
3. $\angle \mathrm{E}=\angle \mathrm{C}$

Reasons

1. Given
2. Vertical Angles Congruent
3. No-Choice Theorem

Given: $\angle \mathrm{A}=\angle \mathrm{D}$

Prove: $\angle \mathrm{E}=\angle \mathrm{C}$

Statements

1. $\angle \mathrm{A}=\angle \mathrm{D}$
2. $\angle \mathrm{ABE}=\angle \mathrm{DBC}$
3. $\angle \mathrm{E}=\angle \mathrm{C}$

Reasons

1. Given
2. Vertical Angles Congruent
3. No-Choice Theorem
