Theorems involving proportions in triangles

Section 8.4 and 8.5

Shadow Problem

While waiting outside for a friend, Matthew noticed that the flagpole cast a 15-ft shadow and he himself cast a 4.5-ft shadow. If Matthew is 6 ft tall, how tall is the flagpole?

Solution

Index Card: Side-Splitter Theorem

If $\overrightarrow{BE} | | \overrightarrow{CD}$ Then $\frac{AB}{BC} = \frac{AE}{ED}$

Theorem: If a line is || to one side of a Δ and intersects the other 2 sides, it divides those 2 sides proportionally. (Side–Splitter Theorem)

Given: AT || BN FA = 6, FT = 3, AT = 5, TN = 4 Find: length BN and AB

N

Η

You try his one! Remember to fabel the shape and set up roportions \Im ing corresponding sides or side-splitter theorem.

Answer:

> BN = 35/3 or 11 2/3

Did you get it?

Theorem: If three or more parallel lines are intersected by two transversals, the parallel lines divide the transversals proportionally.

Index Card

Angle Bisector Theorem: If a ray bisects an angle of a triangle, it divides the opposite side into segments that are proportional to the adjacent sides.

If ray AC bisects angle BAD, then $\frac{BC}{CD} = \frac{AB}{AD} \frac{L}{CD}$

Example 3

Thus, KM = $5\left(\frac{8}{5}\right) =$

Example 4

1

$1 \overrightarrow{XA} \parallel \overrightarrow{YZ}$	1 Given
$2 \frac{WX}{XY} = \frac{WA}{AZ}$	2 Side-Splitter Theorem
$\begin{array}{ccc} 3 & \angle XAY \cong \angle XYA \\ 4 & \overline{XA} \cong \overline{XY} \end{array}$	3 Given A If \triangle then \triangle
$5 \frac{WX}{XA} = \frac{WA}{AZ}$	5 Substitution (4 in 2)

Example 5

1 DH BC	1 Given	
$2 \frac{\text{CD}}{\text{DE}} = \frac{\text{BH}}{\text{HE}}$	2 Side-Splitter Theorem	
3 H͡F∥B͡G	3 Given	
$4 \ \frac{BH}{HE} = \frac{GF}{FE}$	4 Same as 2	
$5 \frac{\text{CD}}{\text{DE}} = \frac{\text{GF}}{\text{FE}}$	5 Transitive Property (2, 4)	

Partner Problems

Work with your partner to complete p. 348 #9, 11, 17 – 21 p. 355 #2, 5 – 7, 11, 13, 14, 20

Refer to your index cards if needed!!!

Homework

> Watch these videos:

- Similarity Example Where Same Side Plays Different Roles
- Similar Right Triangle Examples
- Review of Radicals