Theorems involving proportions in triangles

Section 8.4 and 8.5

Shadow Problem

> While waiting outside for a friend, Matthew noticed that the flagpole cast a 15-ft shadow and he himself cast a 4.5-ft shadow. If Matthew is 6 ft tall, how tall is the flagpole?

Not Drawn to scare

Solution

Index Card: Side-Splitter Theorem

$$
\begin{aligned}
& \text { If } \overleftrightarrow{\mathrm{BE}} \| \overleftrightarrow{\mathrm{CD}} \\
& \text { Then } \frac{A B}{B C}=\frac{A E}{E D}
\end{aligned}
$$

Theorem: If a line is || to one side of a Δ and intersects the other 2 sides, it divides those 2 sides proportionally. (Side-Splitter Theorem)

Given: $\overline{\mathrm{AT}} \| \overline{\mathrm{BN}}$
$\mathrm{FA}=6, \mathrm{FT}=3, \mathrm{AT}=5, \mathrm{TN}=4$
Find: length BN and AB

Rememel to label the
Shape and set up
Sroportions sing corresponding sides or side-splitter theorem.

Answer:

$>B N=35 / 3$ or $112 / 3$
$>A B=8$

Theorem: If three or more parallel lines are intersected by two transversals, the parallel lines divide the transversals proportionally.

Given: $\overleftrightarrow{\mathrm{AB}}\|\overleftrightarrow{\mathrm{CD}}\| \overleftrightarrow{\mathrm{EF}}$
Conclusion: $\frac{A C}{C E}=\frac{B D}{D F} / \frac{A E}{C E}=\frac{B F}{D F}$

Angle Bisector Theorem: If a ray bisects an angle of a triangle, it divides the opposite side into segments that are proportional to the adjacent sides.

If ray AC bisects angle BAD ,

 then $\frac{B C}{C D}=\frac{A B}{A D}$

Example 3

Given: a \| b \| c \| d,
lengths as shown,

$$
\mathrm{KP}=24
$$

Find: KM

According to Theoretp 66 , the ratio KM:MO;OP is equal to $5: 2: 8$. Therefore, we let $K M=5 x, M Q=2 x$, and $\phi \mathcal{D}=8 x$. Si ice $K P=24$, $5 x+2 x+8 x=24 \square$
$15 \mathrm{x}=24$
$\begin{aligned} \mathrm{x} & =\frac{24}{15}=\frac{3}{5} \\ \mathrm{M} & =5\left(\frac{8}{5}\right)=?\end{aligned}$
Thus, $\mathrm{KM}=5\left(\frac{8}{5}\right)=\square$

Example 4

Given: $\overleftrightarrow{X A} \| \overleftrightarrow{Y Z}$, $\angle X A Y \cong \angle X Y A$
Conclusion: $\begin{aligned} \frac{W X}{X A} & =\frac{W A}{A Z} \\ \frac{W A}{A Z} & =\frac{\omega X}{X \psi}\end{aligned}$

$$
T
$$

$1 \overleftrightarrow{X A} \| \overleftrightarrow{Y Z}$
$2 \frac{W X}{X Y}=\frac{W A}{A Z}$
$3 \angle X A Y \cong \angle X Y A$
$4 \frac{\angle X A}{X X Y}$
$5 \frac{W X}{X A}=\frac{W A}{A Z}$

1 Given
2 Side-Splitter Theorem
3 Given
4 If $\Delta \Delta$, then Δ.
5 Substitution (4 in 2)

Example 5

> Given: $\stackrel{\overleftrightarrow{\mathrm{DH}} \| \overleftrightarrow{\mathrm{HC}}}{\overleftrightarrow{\mathrm{HF}} \| \overleftrightarrow{\mathrm{BG}}}$ Prove: $\frac{\mathrm{CD}}{\mathrm{DE}}=\frac{\mathrm{GF}}{\mathrm{FE}}$

| $1 \overleftrightarrow{\mathrm{DH}} \\| \overleftrightarrow{\mathrm{BC}}$ | 1 Given |
| :--- | :--- | :--- |
| $2 \frac{\mathrm{CD}}{\mathrm{DE}}=\frac{\mathrm{BH}}{\mathrm{HE}}$ | 2 Side-Splitter Theorem |
| $3 \overleftrightarrow{\mathrm{HF}} \\| \overleftrightarrow{\mathrm{BG}}$ | 3 Given |
| $4 \frac{\mathrm{BH}}{\mathrm{HE}}=\frac{\mathrm{GF}}{\mathrm{FE}}$ | 4 Same as 2 |
| $5 \frac{\mathrm{CD}}{\mathrm{DE}}=\frac{\mathrm{GF}}{\mathrm{FE}}$ | 5 Transitive Property $(2,4)$ |

Partner Problems

$>$ Work with your partner to complete

- p. 348 \#9, 11, 17-21
-p. 355 \#2, $5-7,11,13,14,20$
> Refer to your index cards if needed!!!

Homework

> Watch these videos:

- Similarity Example Where Same Side Plays Different Roles
- Similar Right Triangle Examples
- Review of Radicals

