9.3 **Altitude-On-Hypotenuse** Theorems (a.k.a Geometry Mean)

Warm Up

1,49,14,25,36,49

Simplify.

Index Card

Find the geometric mean of 9 and 16

X \mathcal{A} b X 9 X 16 X x = 12

Index Card: When an altitude is drawn from a vertex to a hypotenuse, then three similar triangles are formed.

**Identify the three similar triangles! Which theorem can they be proven similar?

Altitudes!!!! What do you remember?

The hypotenuse is split into two pieces BD and DA

If the altitude is in the means place, put the two segments of the hypotenuse into the extremes.

Index Card

Theorem: The altitude to the hypotenuse is the mean proportional (or geometric mean) between the segments of the hypotenuse.

Index Card

Or use similar triangles...using the large triangle and the small triangle, set up a proportion using the hypotenuse and the short leg.

Index Card

Remember: You can use similar triangles...compare the hypotenuse and the long leg using the large triangle and the medium-sized triangle.

EX: 2 Find the length of AB.

EX: 4 Find the length of CB.

Homework

• p. 379 #1-5, 16, 17