9.3

Altitude-On-Hypotenuse Theorems
(a.k.a Geometry Mean)

Warm Up

Given two numbers a and b, x is the geometric mean if

EXTREMES

MEANS

Find the geometric mean of 9 and 16

Index Card: When an altitude is drawn from a vertex to a hypotenuse, then three similar triangles are formed.
**Identify the three similar triangles! Which theorem can they be proven similar?

Altitudes!!!!
What do you remember?

B

The hypotenuse is split into two pieces $B D$ and DA

If the altitude is in the means place, put the

 two segments of the hypotenuse into the extremes.

Index Card

Theorem: The altitude to the hypotenuse is the mean proportional (or geometric mean) between the segments of the hypotenuse.

B

If the leg is in the means place, put the whole hyp. and segment adjacent to that leg into the extremes.

Index Card

Or use similar triangles...using the large triangle and the small triangle, set up a proportion using the hypotenuse and the short leg.

Index Card

Index Card

Using the other part of the hypotenuse:
the LEG is the geometric mean

A

EX: 2 Find the length of AB .

EX 3: Solve for x
C

B
$x \frac{3}{=x=} \frac{16}{x=35.3} 6 \approx 5.33$

EX: 4 Find the length of CB.

EX: 5 Solve for x
C

B

$$
\begin{gathered}
\frac{x}{5}=\frac{512 x}{25}=25 \\
x 2=25 \approx 2.08 \\
x=\frac{13}{2}=2
\end{gathered}
$$

Homework

- p. 379 \#1-5, 16, 17

